Giải bài 52, 53, 54 trang 37 SBT Toán 8 tập 1

0
90
Rate this post

Giải bài tập trang 37 bài 9 biến đổi các biểu thức hữu tỉ Giá trị của phân thức Sách bài tập (SBT) Toán 8 tập 1. Câu 52: Tìm điều kiện của các biến trong mỗi phân thức sau đây…

Câu 52 trang 37 Sách bài tập (SBT) Toán 8 tập 1

Tìm điều kiện của các biến trong mỗi phân thức sau đây. Chứng minh rằng khi giá trị của phân thức xác định thì giá trị đó không phụ thuộc vào các biến x và y (nghĩa là chứng tỏ rằng có thể biến đổi phân thức đã cho thành một biểu thức không chứa x và y ) :

a. ({{{x^2} – {y^2}} over {left( {x + y} right)left( {6x – 6y} right)}})

Bạn đang xem: Giải bài 52, 53, 54 trang 37 SBT Toán 8 tập 1

b. ({{2ax – 2x – 3y + 3ay} over {4ax + 6x + 9y + 6ay}}) ( a là hằng số khác  )

Giải:

a. ({{{x^2} – {y^2}} over {left( {x + y} right)left( {6x – 6y} right)}})xác định khi (left( {x + y} right)left( {6x – 6y} right) ne 0 Rightarrow left{ {matrix{  {x + y ne 0}  cr {6x – 6y ne 0}  cr } } right.)

( Leftrightarrow left{ {matrix{{x ne  – y}  cr{x – y ne 0}  cr} } right. Leftrightarrow left{ {matrix{{x ne  – y}  cr{x ne y}  cr} } right.)

Điều kiện  

({{{x^2} – {y^2}} over {left( {x + y} right)left( {6x – 6y} right)}} = {{left( {x + y} right)left( {x – y} right)} over {left( {x + y} right)6left( {x – y} right)}} = {1 over 6})

Vậy biểu thức không phụ thuộc vào x, y

b. ({{2ax – 2x – 3y + 3ay} over {4ax + 6x + 9y + 6ay}})xác định khi (4ax + 6x + 9y + 6ay ne 0)

( Rightarrow 2xleft( {2a + 3} right) + 3yleft( {2a + 3} right) = left( {2a + 3} right)left( {2x + 3y} right) ne 0)

Vì (a ne  – {3 over 2} Rightarrow 2a + 3 ne 0 Rightarrow 2x + 3y ne 0 Rightarrow x ne  – {3 over 2}y)

điều kiện : (x ne  – {3 over 2}y)với (a ne  – {3 over 2})

({{2ax – 2x – 3y + 3ay} over {4ax + 6x + 9y + 6ay}} = {{2xleft( {a – 1} right) + 3yleft( {a – 1} right)} over {left( {2a + 3} right)left( {2x + 3y} right)}} = {{left( {a – 1} right)left( {2x + 3y} right)} over {left( {2a + 3} right)left( {2x + 3y} right)}} = {{a – 1} over {2a + 3}})

Vậy biểu thức không phụ thuộc vào x, y


Câu 53 trang 37 Sách bài tập (SBT) Toán 8 tập 1

Đố. Đố em tìm được giá trị của x để giá trị của phân thức ({{4{x^2} – 4{x^3} + {x^4}} over {{x^3} – 2{x^2}}}) bằng:

a. – 2

b. 2

c. 0

Giải:

({x^3} – 2{x^2} = {x^2}left( {x – 2} right) ne 0 Rightarrow x ne 0)và (x ne 2) điều kiện (x ne 0,x ne 2)

Ta có: ({{4{x^2} – 4{x^3} + {x^4}} over {{x^3} – 2{x^2}}} = {{{x^2}left( {{x^2} – 4x + 4} right)} over {{x^2}left( {x – 2} right)}} = {{{x^2}{{left( {x – 2} right)}^2}} over {{x^2}left( {x – 2} right)}} = x – 2)

a. Nếu phân thức đã cho bằng – 2 thì biểu thức x – 2 cũng có giá trị bằng – 2 suy ra: x – 2 = – 2 ⇒ x = 0 không thỏa mãn điều kiện.

Vậy không có giá trị nào của x để phân thức bằng – 2

b. Nếu phân thức đã cho bằng 2 thì biểu thức x – 2 cũng có giá trị bằng 2 suy ra:

x – 2 = 2 ⇒ x = 4 thì phân thức có giá trị bằng 2.

c. Nếu phân thức có giá trị bằng 0 thì biểu thức x – 2 cũng có giá trị bằng 0 suy ra :

x – 2 = 0 ⇒ x = 2 mà x = 2 không thỏa mãn điều kiện.

Vậy không có giá trị nào của x để phân thức có giá trị bằng 0.

 


Câu 54 trang 37 Sách bài tập (SBT) Toán 8 tập 1

Cho biểu thức ({{{x^2} + 2x} over {2x + 10}} + {{x – 5} over x} + {{50 – 5x} over {2xleft( {x + 5} right)}})

a. Tìm điều kiện của biến x để giá trị của biểu thức được xác định.

b. Tìm giá trị của x để giá trị của biểu thức bằng 1

c. Tìm giá trị của x để giá trị của biểu thức bằng ( – {1 over 2})

d. Tìm giá trị của x để giá trị của biểu thức bằng – 3


Giải:

a. Biểu thức xác định khi (2x + 10 ne 0,x ne 0) và (2xleft( {x + 5} right) ne 0)

( Rightarrow x ne 0)và (x ne  – 5)

Điều kiện (x ne 0) và (x ne  – 5)

(eqalign{ & {{{x^2} + 2x} over {2x + 10}} + {{x – 5} over x} + {{50 – 5x} over {2xleft( {x + 5} right)}} = {{{x^2} + 2x} over {2left( {x + 5} right)}} + {{x – 5} over x} + {{50 – 5x} over {2xleft( {x + 5} right)}}  cr  &  = {{{x^3} + 2{x^2} + 2{x^2} – 50 + 50 – 5x} over {2xleft( {x + 5} right)}} = {{{x^3} + 4{x^2} – 5x} over {2xleft( {x + 5} right)}} = {{xleft( {{x^2} – x + 5x – 5} right)} over {2xleft( {x + 5} right)}}  cr &  = {{left( {x – 1} right)left( {x + 5} right)} over {2left( {x + 5} right)}} = {{x – 1} over 2} cr} )

b. Nếu giá trị của phân thức bằng 1 thì giá trị của biểu thức ({{x – 1} over 2}) cũng bằng 1

Suy ra: ({{x – 1} over 2} = 1 Rightarrow x – 1 = 2 Rightarrow x = 3) mà x = 3 thỏa mãn điều kiện.

Vậy x = 3 thì giá trị của phân thức bằng 1

c. Nếu giá trị của phân thức bằng ( – {1 over 2}) thì giá trị của biểu thức ({{x – 1} over 2}) cùng bằng  ( – {1 over 2})

Suy ra: ({{x – 1} over 2} =  – {1 over 2} Rightarrow x – 1 =  – 1 Rightarrow x = 0) mà x = 0 không thỏa mãn điều kiện.

Vậy không có giá trị nào của x để phân thức bằng( – {1 over 2}).

d. Nếu giá trị của phân thức bằng – 3 thì giá trị của biểu thức ({{x – 1} over 2}) cũng bằng – 3

Suy ra: ({{x – 1} over 2} =  – 3 Rightarrow x – 1 =  – 6 Rightarrow x =  – 5) mà x = – 5 không thỏa mãn điều kiện.

Vậy không có giá trị nào của x để phân thức bằng – 3 

Trường

Giải bài tập

Bản quyền bài viết thuộc thcs-thptlongphu. Mọi hành vi sao chép đều là gian lận!
Nguồn chia sẻ: https://thcs-thptlongphu.edu.vn
https://thcs-thptlongphu.edu.vn/giai-bai-52-53-54-trang-37-sbt-toan-8-tap-1/

Đăng bởi: Thcs-thptlongphu.edu.vn

Chuyên mục: Tổng hợp