Giải bài 45, 46, 47 trang 163 SBT Toán 9 tập 2

0
162
Rate this post

Giải bài tập trang 163 bài 5 Dấu hiệu nhận biết tiếp tuyến của đường tròn Sách bài tập (SBT) Toán 9 tập 2. Câu 45: Cho tam giác ABC cân tại A, các đường cao AD và BE cắt nhau tại H. Vẽ đường tròn (O) có đường kính AH…

Câu 45* trang 163 Sách bài tập (SBT) Toán 9 Tập 1

Cho tam giác ABC cân tại A, các đường cao AD và BE cắt nhau tại H. Vẽ đường tròn (O) có đường kính AH. Chứng minh rằng:

a)      Điểm E nằm trên đường tròn(O);

Bạn đang xem: Giải bài 45, 46, 47 trang 163 SBT Toán 9 tập 2

b)      DE là tiếp tuyến của đường tròn (O).

Giải:

a) Gọi O là trung điểm của AH

Tam giác AEH vuông tại E có EO là đường trung tuyến nên:

( EO = OA = OH ={{AH} over 2}) (tính chất tam giác vuông)

Vậy điểm E nằm trên đường tròn (left( {O;{{AH} over 2}} right))

b) Ta có: OH = OE

suy ra tam giác OHE cân tại O

suy ra: (widehat {OEH} = widehat {OHE})                      (1)

Mà (widehat {BHD} = widehat {OHE}) (đối đỉnh)            (2)

Trong tam giác BDH ta có:

(widehat {HDB} = 90^circ )

Suy ra: (widehat {HBD} + widehat {BHD} = 90^circ )            (3)

Từ (1), (2) và (3) suy ra:

(widehat {OEH} + widehat {HBD} = 90^circ )                          (4)

Tam giác ABC cân tại A có AD ⊥ BC nên BD = CD

Tam giác BCE vuông tại E có ED là đường trung tuyến nên:

(ED = BD = {{BC} over 2}) (tính chất tam giác vuông).

Suy ra tam giác BDE cân tại D

Suy ra: (widehat {BDE} = widehat {DEB})                               (5)

Từ (4) và (5) suy ra: (widehat {OEH} + widehat {DEB} = 90^circ ) hay (widehat {DEO} = 90^circ )

Suy ra: DE ⊥ EO. Vậy DE là tiếp tuyến của đường tròn ((O).

 


Câu 46 trang 163 Sách bài tập (SBT) Toán 9 Tập 1

Cho góc nhọn xOy, điểm A thuộc tia Ox. Dựng đường tròn tâm I tiếp xúc với Ox tại A và có tâm I nằm trên tia Oy.

Giải:

*        Phân tích

Giả sử đường tròn tâm I dựng được thỏa mãn điều kiện bài toán.

−           Đường tròn tâm I tiếp xúc với Ox tại A nên I nằm trên đường thẳng vuông góc với Ox kẻ từ A.

−           Tâm I nằm trên tia Oy  nên I là giao điểm của Oy và đường thẳng vuông góc với Ox tại A.

*        Cách dựng

−           Dựng đường vuông góc với Ox tại A cắt Oy tại I.

−           Dựng đường tròn (I; IA).

*        Chứng minh

Ta có: I thuộc Oy, OA ⊥ IA tại A.

Suy ra Ox là tiếp tuyến của đường tròn ( I;IA)

 hay (I; IA) tiếp xúc với Ox.

*        Biện luận

Vì (widehat {xOy}) là góc nhọn nên đường thẳng vuông góc với Ox tại A luôn cắt tia Oy nên tâm I luôn xác định và duy nhất.

 


Câu 47 trang 163 Sách bài tập (SBT) Toán 9 Tập 1

Cho đường tròn (O) và đường thẳng d không giao nhau. Dựng tiếp tuyến của đường tròn (O) sao cho tiếp tuyến đó song song với d.

Giải:

*        Phân tích

Giả sử tiếp tuyến của đường tròn dựng được thỏa

mãn điều kiện bài toán.

−        d1 là tiếp tuyến của đường tròn tại  A nên d⊥ OA

−        Vì d1 // d nên d ⊥ OA.

Vậy A là giao điểm của đường thẳng kẻ từ O vuông góc với d.

*        Cách dựng

−        Dựng OH vuông góc với d cắt đường tròn (O) tại A và B.

−        Dựng đường thẳng d1 đi qua A và vuông góc với OA.

−        Dựng đường thẳng d2 đi qua B và vuông góc với OB.

Khi đó d1 và d2 là hai tiếp tuyến cần dựng.

*        Chứng minh

Ta có: A và B thuộc (O)

d// d mà d ⊥ OH nên d⊥ OH hay d⊥ OA tại A

Suy ra d1 là tiếp tuyến của đường tròn (O)

           d2 // d mà d ⊥ OH nên d⊥ OH hay d2 ⊥ OB tại B

Suy ra dlà tiếp tuyến của đường tròn (O)

*        Biện luận

Đường thẳng OH luôn cắt đường tròn (O) nên giao điểm A và B luôn dựng được.

Trường

Giải bài tập

Bản quyền bài viết thuộc thcs-thptlongphu. Mọi hành vi sao chép đều là gian lận!
Nguồn chia sẻ: https://thcs-thptlongphu.edu.vn
https://thcs-thptlongphu.edu.vn/giai-bai-45-46-47-trang-163-sbt-toan-9-tap-2/

Đăng bởi: Thcs-thptlongphu.edu.vn

Chuyên mục: Tổng hợp