Giải bài 92, 93, 94, 95 trang 91, 92 SBT Toán 8 tập 1

0
111
Rate this post

Giải bài tập trang 91, 92 bài 8 đối xứng tâm Sách bài tập (SBT) Toán 8 tập 1. Câu 92: Cho hình 13 trong đó ABCD là hình bình hành. Chứng minh rằng điểm M đối xứng với điểm N qua điểm C…

Câu 92 trang 91 Sách bài tập (SBT) Toán 8 tập 1

Cho hình 13 trong đó ABCD là hình bình hành. Chứng minh rằng điểm M đối xứng với điểm N qua điểm C.

Bạn đang xem: Giải bài 92, 93, 94, 95 trang 91, 92 SBT Toán 8 tập 1

Giải:                                                                

Tứ giác ABCD là hình bình hành

⇒ AB // CD hay BM // CD

Xét tứ giác BMCD ta có:

BM // CD

BM = CD (gt)

Suy ra: Tứ giác BMCD là hình bình hành ( vì có một cặp cạnh đối song song và bằng nhau)

⇒ MC // BD và MC = BD (1)

AD // BC ( gt) hay DN // BC

Xét tứ giác BCND ta có:

DN // BC

DN = BC (vì cùng bằng AD)

Suy ra: Tứ giác BCND là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ CN // BD và CN = BD (2)

Từ (1) và (2) suy ra: M, C, N thẳng hàng và MC = CN

Vậy M và N đối xứng qua tâm C.

 


Câu 93 trang 92 Sách bài tập (SBT) Toán 8 tập 1

Cho hình 14 trong đó DE // AB, DF // AC. Chứng minh rằng điểm E đối xưng với điểm F qua điểm I.

Giải:                                                                     

DE // AB (gt) hay DE //AF

DF // AC (gt)

hay DF // AE

Tứ giác AEDF là hình bình hành.

I là trung điểm của AD nên EF đi qua trung điểm I và IE = IF ( tính chất hình bình hành)

Vậy E và F đối xứng qua tâm I.

 


Câu 94 trang 92 Sách bài tập (SBT) Toán 8 tập 1

Cho tam giác ABC, các đường trung tuyến BM, CN. Gọi D là điểm đối xứng với B qua M, gọi E là điểm đối xứng với C qua N. Chứng minh rằng điểm D đối xứng với điểm E qua điểm A.

Giải:                                                              

Xét tứ giác ABCD ta có:

MA = MC (gt)

MB = MD (định nghĩa đối xứng tâm)

Suy ra: Tứ giác ABCD là hình bình hành ( vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

⇒ AD // BC và AD = BC (1)

Xét tứ giác ACBE:

AN = NB (gt)

NC = NE ( định nghĩa đối xứng tâm)

Suy ra: Tứ giác ACBE là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường) ⇒ AE // BC và AE = BC (2)

Từ (1) và (2) suy ra: A, D, E thẳng hàng và AD = AE

nên A là trung điểm của DE hay điểm D đối xứng với điểm E qua điểm A.

 


Câu 95 trang 92 Sách bài tập (SBT) Toán 8 tập 1

Cho tam giác ABC vuông tại A, điểm D thuộc cạnh BC. Gọi E là điểm đối xứng với D qua AB, gọi F là điểm đối xứng với D qua AC. Chứng minh rằng các điểm E và F đối xứng nhau qua điểm A.

Giải:                                                                          

Vì E đối xứng với D qua AB

⇒ AB là đường trung trực của đoạn thẳng DE

⇒ AD = AE (tính chất đường trung trực)

nên ∆ ADE cân tại A

Suy ra: AB là đường phân giác của (widehat {DAE} Rightarrow {widehat A_1} = widehat {{A_2}})

Vì F đối xứng với D qua AC

⇒ AC là đường trung trực của đoạn thẳng DF

⇒ AD = AF ( tính chất đường trung trực)

nên ∆ ADF cân tại A

Suy ra: AC là đường phân giác của (widehat {DAF})

( Rightarrow {widehat A_3} = {widehat A_4})

(widehat {EAF} = widehat {EAD} + widehat {{rm{DAF}}} = {widehat A_2} + {widehat A_1} + {widehat A_3} + {widehat A_4})

(= 2left( {{{widehat A}_1} + {{widehat A}_3}} right) = {2.90^0} = {180^0})

⇒ E, A, F thẳng hàng có AE = AF = AD

nên A là trung điểm của EF hay điểm E đối xứng với F qua điểm A.

Trường

Giải bài tập

Bản quyền bài viết thuộc thcs-thptlongphu. Mọi hành vi sao chép đều là gian lận!
Nguồn chia sẻ: https://thcs-thptlongphu.edu.vn
https://thcs-thptlongphu.edu.vn/giai-bai-92-93-94-95-trang-91-92-sbt-toan-8-tap-1/

Đăng bởi: Thcs-thptlongphu.edu.vn

Chuyên mục: Tổng hợp