Giải bài tập trang 96, 97, 98 bài 11 hình thoi Sách bài tập (SBT) Toán 8 tập 1. Câu 136: Cho hình thoi ABCD. Kẻ hai đường cao AH, AK. Chứng minh rằng AH = AK…
Câu 136 trang 97 Sách bài tập (SBT) Toán 8 tập 1
a. Cho hình thoi ABCD. Kẻ hai đường cao AH, AK. Chứng minh rằng AH = AK
b. Hình bình hành ABCD có hai đường cao AH , AK bằng nhau. Chứng minh rằng ABCD là hình thoi.
Bạn đang xem: Giải bài 136, 137, 138, 139 trang 97 SBT Toán 8 tập 1
Giải:
a. Xét hai tam giác vuông AHB và AKD:
(widehat {AHB} = widehat {AKD} = {90^0})
AB = AD (gt)
(widehat B = widehat D) (tính chất hình thoi)
Do đó: ∆ AHB = ∆ AKD (cạnh huyền, góc nhọn)
⇒ AH = AK
b. Xét hai tam giác vuông AHC và AKC:
(widehat {AHC} = widehat {AKC} = {90^0})
AH = AK (gt)
AC cạnh huyền chung
Do đó: ∆ AHC = ∆ AKC (cạnh huyền, góc nhọn)
( Rightarrow widehat {ACH} = widehat {ACK}) hay (widehat {ACB} = widehat {ACD})
⇒ CA là tia phân giác (widehat {BCD})
Hình bình hành ABCD có đường chéo CA là tia phân giác nên là hình thoi.
Câu 137 trang 97 Sách bài tập (SBT) Toán 8 tập 1
Hình thoi ABCD có(widehat A = {60^0}). Kẻ hai đường cao BE, BF. Tam giác BEF là tam giác gì ? Vì sao ?
Giải:
Xét hai tam giác vuông BEA và BFC:
(widehat {BEA} = widehat {BFC} = {90^0})
(widehat A = widehat C) (tính chất hình thoi)
BA = BC (gt)
Do đó: ∆ BEA = ∆ BFC (cạnh huyền, góc nhọn)
⇒ BE = BF
⇒ ∆ BEF cân tại B
( Rightarrow {widehat B_1} = {widehat B_2})
⇒ Trong tam giác vuông BEA ta có:
(eqalign{ & Rightarrow widehat A + {widehat B_1} = {90^0} Rightarrow {widehat B_1} = {90^0} – widehat A = {90^0} – {60^0} = {30^0} cr & Rightarrow {widehat B_2} = {widehat B_1} = {30^0} cr} )
( Rightarrow widehat A + widehat {ABC} = {180^0}) (hai góc trong cùng phía bù nhau)
(eqalign{ & Rightarrow widehat {ABC} – {180^0} – widehat A = {180^0} – {60^0} = {120^0} cr & Rightarrow widehat {ABC} = {widehat B_1} + {widehat B_2} + {widehat B_3} cr & Rightarrow {widehat B_3} = widehat {ABC} – left( {{{widehat B}_1} + {{widehat B}_2}} right)cr & = {120^0} – left( {{{30}^0} + {{30}^0}} right) = {60^0} cr} )
Vậy ∆ BEF đều.
Câu 138 trang 97 Sách bài tập (SBT) Toán 8 tập 1
Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Gọi E, F, G, H theo thứ tự là chân các đường vuông góc kẻ từ O đến AB, BC, CD, DA. Tứ giác EFGH là hình gì ? Vì sao?
Giải:
Ta có: AB // CD (gt)
OE ⊥ AB (gt)
⇒ OE ⊥ CD
OG ⊥ CD (gt)
Suy ra: OE trùng với OG nên ba điểm O, E, G thẳng hàng.
BC // AD (gt)
OF ⊥ BC (gt)
⇒ OF ⊥ AD
OH ⊥ AD (gt)
Suy ra : OF trùng với OH nên ba điểm O, H, F thẳng hàng
AC và BD là đường phân giác các góc của hình thoi
OE = OF (tính chất tia phân giác) (1)
OE = OH (tính chất tia phân giác) (2)
OH = OG (tính chất tia phân giác) (3)
Từ (1), (2) và (3) suy ra: OE = OF = OH = OG
Tứ giác EFGH có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường nên là hình chữ nhật.
Câu 139 trang 97 Sách bài tập (SBT) Toán 8 tập 1
Hình thoi ABCD có chu vi bằng 16cm, đường cao AH bằng 2cm. Tính các góc của hình thoi, biết rằng (widehat A > widehat B)
Giải:
Chứng minh: Chu vi hình thoi bằng 16 (m) nên độ dài một cạnh bằng:
16 : 4 = 4 (cm)
Gọi M là trung điểm của AD.
Trong tam giác vuông AHD ta có HM là trung tuyến thuộc cạnh huyền
HM = AM = ({1 over 2})AD =({1 over 2}).4 = 2 (cm)
⇒ AM = HM = AM = 2 cm
⇒ ∆ AHM đều
( Rightarrow widehat {HAM} = {60^0}$hay $widehat {HAD} = {60^0})
Trong tam giác vuông AHD ta có: (widehat {HAD} + widehat D = {90^0})
( Rightarrow widehat D = {90^0} – widehat {HAD} = {90^0} – {60^0} = {30^0})
( Rightarrow widehat B = widehat D = {30^0}) (tính chất hình thoi)
(widehat B + widehat C = {180^0}) (hai góc trong cùng phía bù nhau)
( Rightarrow widehat C = {180^0} – widehat B = {180^0} – {30^0} = {150^0})
(widehat A = widehat C = {150^0}) (tính chất hình thoi)
Trường
Đăng bởi: Thcs-thptlongphu.edu.vn
Chuyên mục: Tổng hợp