Giải bài 57, 58, 59, 60 trang 165, 166 SBT Toán 9 tập 2

0
113
Rate this post

Giải bài tập trang 165, 166 bài 6 Tính chất của hai tiếp tuyến cắt nhau Sách bài tập (SBT) Toán 9 tập 2. Câu 57: Chứng minh rằng nếu tam giác ABC có chu vi 2p,bán kính đường tròn nội tiếp bằng r thì diện tích S của tam giác có công thức…

Câu 57 trang 165 Sách bài tập (SBT) Toán 9 Tập 1

Chứng minh rằng nếu tam giác ABC có chu vi 2p,bán kính đường tròn nội tiếp bằng r thì diện tích S của tam giác có công thức:

S = p.r

Bạn đang xem: Giải bài 57, 58, 59, 60 trang 165, 166 SBT Toán 9 tập 2

Giải:

Gọi O là tâm đường tròn nội tiếp tam giác ABC

Nối OA, OB, OC.

Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBC.

Ta có: ({S_{ABC}} = {S_{OAB}} + {S_{OAC}} + {S_{OBC}})

                    (= {1 over 2}.AB.r + {1 over 2}.AC.r + {1 over 2}.BC.r)

                     (= {1 over 2}(AB + AC + BC).r)

Mà AB + AC + BC = 2p

Nên ({S_{ABC}} = {1 over 2}.2p.r = p.r)

Loigiaihay.com


Câu 58 trang 165 Sách bài tập (SBT) Toán 9 Tập 1

Cho tam giác ABC vuông tại A. Đường tròn (O) nội tiếp tam giác ABC tiếp xúc với AB, AC lần lượt tại D, E.

a)      Tứ giác ADOE là hình gì? Vì sao?

b)      Tính bán kính của đường tròn (O) biết AB = 3cm, AC = 4cm

Giải:

a) Ta có: (OD  bot AB Rightarrow widehat {ODA} = 90^circ )

(OE bot AC Rightarrow widehat {OEA} = 90^circ )

(widehat {BAC} = 90^circ ) (gt)

Tứ giác ADOE có ba góc vuông nên nó là hình chữ nhật

Lại có: AD = AE (tính chất hai tiếp tuyến giao nhau)

Vậy tứ giác ADOE là hình vuông.

b) Áp dụng định lí Pi-ta-go vào tam giác vuông ABC ta có:

(B{C^2} = A{B^2} + A{C^2} = {3^2} + {4^2} = 25)

Suy ra:                BC = 5 (cm)

Theo tính chất tiếp tuyến giao nhau ta có:

               AD = AE

               BD = BF

               CE = CF

Mà:         AD = AB – BD

               AE = AC – CF

Suy ra:    AD + AE = AB – BD + (AC – CF )

                                 = AB + AC – (BD + CF )

                                 = AB + AC – (BF + CF )

                                 = AB + AC – BC

Suy ra:    ( AD = AE = {{AB + AC – BC} over 2} = {{3 + 4 – 5} over 2} = 1 (cm))

 


Câu 59 trang 165 Sách bài tập (SBT) Toán 9 Tập 1

Cho tam giác ABC vuông tại A. Gọi R là bán kính của đường tròn ngoại tiếp, r là bán kính của đường tròn nội tiếp tam giác ABC. Chứng minh rằng:

AB + AC = 2(R + r).

Giải:

Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.

Ta có:     BC = 2R

Giả sử đường tròn tâm (O) tiếp với AB tại D, AC tại E và BC tại F.

Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.

Suy ra: AD = AE = EO = OD = r

Theo tính chất hai tiếp tuyến cắt nhau ta có:

                       AD = AE

                        BD = BF

                        CE = CF

Ta có:               2R + 2r = BF + FC + AD + AE

                                       = (BD + AD) + (AE +CE)

                                       = AB + AC

Vậy AB = AC = 2 (R + r).

 


Câu 60 trang 166 Sách bài tập (SBT) Toán 9 Tập 1

Cho tam giác ABC, đường tròn (K) bằng tiếp góc trong góc A tiếp xúc với các tia AB và AC theo thứ tự tại E và F. Cho BC = a, AC = b, AB = c. Chứng minh rằng:

a)      (AE  = AF = {{a + b + c} over 2})

b)      (BE  = {{a + b – c} over 2};)

c)       (CF = {{a + c – b} over 2})

Giải:

a) Gọi D là tiếp điểm của đường tròn (K) với cạnh BC.

Theo tính chất hai tiếp tuyến cắt nhau ta có:

                BE = BD; CD = CF

                AE = AB + BE

                AF = AC + CF

Suy ra:    AE + AF = AB + BE + AC + CF

                              = AB + AC + (BD + DC)

                              = AB + AC + BC = c + b + a

Mà AE = AF (tính chất hai tiếp tuyến cắt nhau)

Suy ra: ({rm{AE = AF = }}{{a + b + c} over 2})

b) Ta có: (BE = AE – AB = {{a + b + c} over 2} – c = {{a + b – c} over 2})

c) Ta có: (CF = AF – AC = {{a + b + c} over 2} – b = {{a + c – b} over 2}.)

Trường

Giải bài tập

Bản quyền bài viết thuộc thcs-thptlongphu. Mọi hành vi sao chép đều là gian lận!
Nguồn chia sẻ: https://thcs-thptlongphu.edu.vn
https://thcs-thptlongphu.edu.vn/giai-bai-57-58-59-60-trang-165-166-sbt-toan-9-tap-2/

Đăng bởi: Thcs-thptlongphu.edu.vn

Chuyên mục: Tổng hợp