Giải bài tập trang 127 bài 6 Tam giác cân Sách giáo khoa (SGK) Toán 7. Câu 50: Hai thanh AB và AC vì kèo một mái nhà thường bằng nhau…
Bài 50 trang 127 – Sách giáo khoa toán 7 tập 1
Hai thanh AB và AC vì kèo một mái nhà thường bằng nhau(h.119)
và thường tạo với nhau một góc bằng:
Bạn đang xem: Giải bài 50, 51, 52 trang 127, 128 SGK Toán 7
a) 1450 nếu là nhà tôn;
b) 1000 nếu là nhà ngói;
Tính góc BAC trong từng trường hợp.
Giải:
Ta có: AB=AC nên tam giác ABC cân ở A, Do đó (widehat{B})=(widehat{C})
a) Trong ∆ABC có (widehat{A})+(widehat{B})+(widehat{C})= 1800
mà (widehat{B})= (widehat{C}) nên (widehat{A})+2(widehat{B})= 1800
2(widehat{B})= 1800-(widehat{A})=1800-1450
=> (widehat{B})=22,50
vậy (widehat{ABC})=22,50
b) tương tự với (widehat{A})=1000
vậy (widehat{ABC})=400
Bài 51 trang 128 – Sách giáo khoa toán 7 tập 1
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, điểm E thuộc cạnh AB sao cho AD=AE.
a) So sánh (widehat{ABD}) và (widehat{ACE}).
b ) Gọi I là giao điểm BD và CE. Tam giác IBC là tam giác gì? Vì sao?
Giải:
∆ABD và ∆ACE có:
AB=AC(gt)
(widehat{A}) góc chung.
AD=AE(gt)
Nên ∆ABD=∆ACE(c.g.c)
Suy ra: (widehat{ABD})=(widehat{ACE}).
Tức là (widehat{B_{1}}) =(widehat{C_{1}}).
b) Ta có (widehat{B})=(widehat{C}) mà (widehat{B_{1}}) =(widehat{C_{1}}) suy ra (widehat{B_{2}})=(widehat{C_{2}}).
Vậy ∆IBC cân tại I.
Bài 52 trang 128 – Sách giáo khoa toán 7 tập 1
Cho góc xOy có số đo (120^0), điểm A thuộc tia phân giác của góc đó. Kẻ AB vuông góc với Ox (B thuộc Ox), kẻ AC vuông góc với Oy (C thuộc Oy). Tam giác ABC là tam giác gì ? Vì sao?
Giải
Tam giác ACO vuông tại C
Tam giác ABO vuông tại B
Xét hai tam giác vuông ACO và ABO có:
+) (widehat{O_{1}}=widehat{O_{2}}) (Vì OA là tia phân giác góc xOy)
+) AO chung
Suy ra (∆ACO=∆ABO) (cạnh huyền-góc nhọn)
Suy ra (AC=AB) (hai cạnh tương ứng)
(widehat {{A_1}} = widehat {{A_2}}) (hai góc tương ứng)
(widehat {{O_1}} = {1 over 2}widehat {xOy} = {1 over 2}{.120^0} = {60^0}) (Vì OA là tia phân giác góc xOy)
Áp dụng định lí tổng ba góc trong một tam giác vào (Delta OBA) ta có:
(eqalign{
& widehat {{O_1}} + widehat B + widehat {{A_1}} = {180^0} cr
& Rightarrow widehat {{A_1}} = {180^0} – widehat {{O_1}} – widehat B = {180^0} – {60^0} – {90^0} = {30^0} cr} )
Do đó: (widehat {{A_1}} = widehat {{A_2}} = {30^0})
Hay (widehat {BAC} = widehat {{A_1}} + widehat {{A_2}} = {60^0})
Vây (∆ABC) có (AC=AB) và (widehat {BAC}= {60^0}) nên là tam giác đều
Trường
Đăng bởi: Thcs-thptlongphu.edu.vn
Chuyên mục: Tổng hợp