Cách giải phương trình chứa ẩn ở mẫu nhanh nhất và bài tập ứng dụng

0
56
Rate this post

Cách giải phương trình chứa ẩn ở mẫu nhanh nhất và bài tập ứng dụng

Giải phương trình chứa ẩn ở mẫu một cách nhanh chóng, chính xác không phải học sinh nào cũng dễ dàng nắm bắt. Mặc dù đây là phần kiến thức Đại số 8 vô cùng quan trọng. Bài viết hôm nay, sẽ giới thiệu cùng các bạn cách giải phương trình chứa ẩn ở mẫu nhanh nhất và nhiều bài tập ứng dụng khác. Bạn tìm hiểu nhé !

I. LÝ THUYẾT CẦN GHI NHỚ

1. Phương trình chứa ẩn ở mẫu là gì ?

Bạn đang xem: Cách giải phương trình chứa ẩn ở mẫu nhanh nhất và bài tập ứng dụng

Phương trình chứa ẩn ở mẫu là phương trình có biểu thức chứa ẩn ở mẫu.

Ví dụ: 

2/y+3=0 là phương trình chứa ẩn ở mẫu (ẩn y)

2-4/x2+2x+7=0 là phương trình chứa ẩn ở mẫu (ẩn x)

Ta thấy, việc tìm điều kiện xác định là rất quan trọng trong việc tìm nghiệm của một phương trình. Sau đây, chúng tôi sẽ hướng dẫn phương pháp tìm điều kiện xác định của một phương trình.

2. Tìm điều kiện xác định của một phương trình

Điều kiện xác định của phương trình là tập hợp các giá trị của ẩn làm cho tất cả các mẫu trong phương trình đều khác 0.

Điều kiện xác định của phương trình viết tắt là ĐKXĐ.

Ví dụ: Tìm điều kiện xác định của các phương trình sau

a) (x – 1)/(x + 2) + 1 = 1/(x – 2).

b) (x – 1)/(1 – 2x) = 1.

Hướng dẫn:

a) Ta thấy x + 2 ≠ 0 khi x ≠ – 2 và x – 2 ≠ 0 khi x ≠ 2.

Do đó ĐKXĐ của phương trình (x – 1)/(x + 2) + 1 = 1/(x – 2) là x ≠ ± 2.

b) Ta thấy 1 – 2x ≠ 0 khi x ≠ 1/2.

Do đó ĐKXĐ của phương trình (x – 1)/(1 – 2x) = 1 là x ≠ 1/2.

II. CÁCH GIẢI PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU

A. Phương pháp:

Bước 1: Tìm điều kiện xác định.

Bước 2: Quy đồng, khử mẫu, rút gọn đưa về dạng phương trình bậc hai.

Bước 3: Giải phương trình bậc hai.

Bước 4: So sánh với điều kiện và kết luận.

B. Các ví dụ điển hình

Ví dụ 1: Giải phương trình Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9

Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn A

Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9

Ví dụ 2: Cho phương trình Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9. Chọn khẳng định đúng về nghiệm của phương trình:

Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn D

Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9

Ví dụ 3: Giải phương trình Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9

Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn

Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9

III. BÀI TẬP CÁCH GIẢI PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU

Bài 1:

Giải phương trìnhLý thuyết: Phương trình chứa ẩn ở mẫu

Hướng dẫn:

+ ĐKXĐ: x ≠ 0; x ≠ – 5.

Lý thuyết: Phương trình chứa ẩn ở mẫu

⇒ (2x + 5)(x + 5) – 2x2 = 0

⇔ 2x2 + 10x + 5x + 25 – 2x2 = 0 ⇔ 15x = – 25 ⇔ x = – 5/3.

+ So sánh với ĐKXĐ ta thấy x = – 5/3 thỏa mãn điều kiện.

Vậy phương trình đã cho có tập nghiệm là S = {- 5/3}.

Bài 2: Giải phương trình Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

ĐKXĐ: x ≠ -3 và x ≠ 2

Phương trình tương đương với (2 – x)(x + 3) – 2(x + 3) = 10(2 – x) – 50

⇔ x2 – 7x – 30 = 0 ⇔ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Đối chiếu với điều kiện ta có nghiệm của phương trình là x = 10

Bài 3: Giải các phương trình sau:

Bài tập: Phương trình chứa ẩn ở mẫu

Hướng dẫn:

Bài tập: Phương trình chứa ẩn ở mẫu

⇔ (x + 1)2 – (x – 1)2 = 16

⇔ (x2 + 2x + 1) – (x2 – 2x + 1) = 16

⇔ 4x = 16 ⇔ x = 4.

Vây phương trình đã cho có nghiệm x = 4.

Bài tập: Phương trình chứa ẩn ở mẫu

⇔ 2(x2 + x – 2) = 2x2 + 2

⇔ 2x = 6 ⇔ x = 3.

Vậy phương trình đã cho có nghiệm là x = 3.

Bài tập: Phương trình chứa ẩn ở mẫu

⇔ 2(x2 + 10x + 25) – (x2 + 25x) = x2 – 10x + 25

⇔ x2 – 5x + 50 = x2 – 10x + 25

⇔ 5x = – 25 ⇔ x = – 5.

Vậy phương trình đã cho có nghiệm x = – 5.

Bài 4: Giải các phương trình sau:

Bài tập: Phương trình chứa ẩn ở mẫu

Hướng dẫn:

a) ĐKXĐ: x ≠ – 1;x ≠ 3.

Bài tập: Phương trình chứa ẩn ở mẫu

⇔ – x – 1 – x + 3 = x2 + x – x2 + 2x – 1

⇔ 5x = 3 ⇔ x = 3/5.

Vậy phương trình đã cho có nghiệm là x = 3/5.

b) ĐKXĐ: x ≠ 3, x ≠ 4, x ≠ 5, x ≠ 6.

Bài tập: Phương trình chứa ẩn ở mẫu

Vậy phương trình đã cho có nghiệm là x = 0;x = 9/2.

c) ĐKXĐ: x ≠ 1.

Bài tập: Phương trình chứa ẩn ở mẫu

⇔ (x2 – 1 )( x3 + 1) – (x2 – 1)(x3 – 1) = 2(x2 + 4x + 4)

⇔ (x5 + x2 – x3 – 1) – (x5 – x2 – x3 + 1) = 2(x2 + 4x + 4)

⇔ 2x2 – 2 = 2x2 + 8x + 8

⇔ 8x = – 10 ⇔ x = – 5/4.

Vậy phương trình đã cho có nghiệm là x = – 5/4.

Bài 5: Giải phương trìnhToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

ĐKXĐ: x ∉ {-2; -3/2; -1; -1/2}

Phương trình tương đương với

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy phương trình có nghiệm là x = (-5 ± √3)/4 và x = -5/2

Bài 6: Giải phương trình Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

ĐKXĐ: x ≠ -1 và x ≠ 1/2

Phương trình tương đương với

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

⇔ x = 5 (thỏa mãn điều kiện)

Vậy phương trình có nghiệm là x = 5

Bài 7: Giải phương trình Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

ĐKXĐ: x≠±2 và x≠-1

Phương trình tương đương với

(x+1)2(x-2) + (x-1)(x+1)(x+2) = (2x+1)(x-2)(x+2)

⇔ (x2 + 2x + 1)(x – 2) + (x2 – 1)(x + 2) = (2x + 1)(x2 – 4)

⇔ x3 – 2x2 + 2x2 – 4x + x – 2 + x3 + 2x2 – x – 2 = 2x3 – 8x + x2 – 4

⇔ x2 + 4x = 0 ⇔Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án(thỏa mãn điều kiện)

Vậy phương trình có nghiệm là x = -4 và x = 0

Bài 8: Giải phương trìnhToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

ĐKXĐ: x ≠ -2/3 và x ≠ 2

Phương trình tương đương với (2x+1)(x-2) = (x+1)(3x+2)

⇔ 2x2 – 4x + x – 2 = 3x2 + 2x + 3x + 2

⇔ x2 + 8x + 4 = 0 ⇔ x = -4 ± 2√3 (thỏa mãn điều kiện)

Vậy phương trình có nghiệm là x = -4 ± 2√3

Trên đây, .vn đã giới thiệu đến quý thầy cố và các bạn học sinh chuyên đề phương trình chứa ẩn ở mẫu và cách giải phương trình chứa ẩn ở mẫu nhanh nhất cùng nhiều bài tập vận dụng khác. Hi vọng, bài viết đã mang đến cho bạn những thông tin hữu ích. Xem thêm cách giải phương trình bậc nhất một ẩn tại đường link này bạn nhé !

Giáo dục

Bản quyền bài viết thuộc thcs-thptlongphu. Mọi hành vi sao chép đều là gian lận!
Tác giả: https://thcs-thptlongphu.edu.vn – Trường Lê Hồng Phong
Nguồn: https://thcs-thptlongphu.edu.vn/cach-giai-phuong-trinh-chua-an-o-mau-nhanh-nhat-va-bai-tap-ung-dung/

Đăng bởi: Thcs-thptlongphu.edu.vn

Chuyên mục: Tổng hợp