Cách giải phương trình chứa ẩn ở mẫu nhanh nhất và bài tập ứng dụng
Giải phương trình chứa ẩn ở mẫu một cách nhanh chóng, chính xác không phải học sinh nào cũng dễ dàng nắm bắt. Mặc dù đây là phần kiến thức Đại số 8 vô cùng quan trọng. Bài viết hôm nay, sẽ giới thiệu cùng các bạn cách giải phương trình chứa ẩn ở mẫu nhanh nhất và nhiều bài tập ứng dụng khác. Bạn tìm hiểu nhé !
I. LÝ THUYẾT CẦN GHI NHỚ
1. Phương trình chứa ẩn ở mẫu là gì ?
Bạn đang xem: Cách giải phương trình chứa ẩn ở mẫu nhanh nhất và bài tập ứng dụng
Phương trình chứa ẩn ở mẫu là phương trình có biểu thức chứa ẩn ở mẫu.
Ví dụ:
2/y+3=0 là phương trình chứa ẩn ở mẫu (ẩn y)
2-4/x2+2x+7=0 là phương trình chứa ẩn ở mẫu (ẩn x)
Ta thấy, việc tìm điều kiện xác định là rất quan trọng trong việc tìm nghiệm của một phương trình. Sau đây, chúng tôi sẽ hướng dẫn phương pháp tìm điều kiện xác định của một phương trình.
2. Tìm điều kiện xác định của một phương trình
Điều kiện xác định của phương trình là tập hợp các giá trị của ẩn làm cho tất cả các mẫu trong phương trình đều khác 0.
Điều kiện xác định của phương trình viết tắt là ĐKXĐ.
Ví dụ: Tìm điều kiện xác định của các phương trình sau
a) (x – 1)/(x + 2) + 1 = 1/(x – 2).
b) (x – 1)/(1 – 2x) = 1.
Hướng dẫn:
a) Ta thấy x + 2 ≠ 0 khi x ≠ – 2 và x – 2 ≠ 0 khi x ≠ 2.
Do đó ĐKXĐ của phương trình (x – 1)/(x + 2) + 1 = 1/(x – 2) là x ≠ ± 2.
b) Ta thấy 1 – 2x ≠ 0 khi x ≠ 1/2.
Do đó ĐKXĐ của phương trình (x – 1)/(1 – 2x) = 1 là x ≠ 1/2.
II. CÁCH GIẢI PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU
A. Phương pháp:
Bước 1: Tìm điều kiện xác định.
Bước 2: Quy đồng, khử mẫu, rút gọn đưa về dạng phương trình bậc hai.
Bước 3: Giải phương trình bậc hai.
Bước 4: So sánh với điều kiện và kết luận.
B. Các ví dụ điển hình
Ví dụ 1: Giải phương trình
Lời giải
Chọn A
Ví dụ 2: Cho phương trình . Chọn khẳng định đúng về nghiệm của phương trình:
Lời giải
Chọn D
Ví dụ 3: Giải phương trình
Lời giải
Chọn
III. BÀI TẬP CÁCH GIẢI PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU
Bài 1:
Giải phương trình
Hướng dẫn:
+ ĐKXĐ: x ≠ 0; x ≠ – 5.
⇒ (2x + 5)(x + 5) – 2x2 = 0
⇔ 2x2 + 10x + 5x + 25 – 2x2 = 0 ⇔ 15x = – 25 ⇔ x = – 5/3.
+ So sánh với ĐKXĐ ta thấy x = – 5/3 thỏa mãn điều kiện.
Vậy phương trình đã cho có tập nghiệm là S = {- 5/3}.
Bài 2: Giải phương trình
Hướng dẫn:
ĐKXĐ: x ≠ -3 và x ≠ 2
Phương trình tương đương với (2 – x)(x + 3) – 2(x + 3) = 10(2 – x) – 50
⇔ x2 – 7x – 30 = 0 ⇔
Đối chiếu với điều kiện ta có nghiệm của phương trình là x = 10
Bài 3: Giải các phương trình sau:
Hướng dẫn:
⇔ (x + 1)2 – (x – 1)2 = 16
⇔ (x2 + 2x + 1) – (x2 – 2x + 1) = 16
⇔ 4x = 16 ⇔ x = 4.
Vây phương trình đã cho có nghiệm x = 4.
⇔ 2(x2 + x – 2) = 2x2 + 2
⇔ 2x = 6 ⇔ x = 3.
Vậy phương trình đã cho có nghiệm là x = 3.
⇔ 2(x2 + 10x + 25) – (x2 + 25x) = x2 – 10x + 25
⇔ x2 – 5x + 50 = x2 – 10x + 25
⇔ 5x = – 25 ⇔ x = – 5.
Vậy phương trình đã cho có nghiệm x = – 5.
Bài 4: Giải các phương trình sau:
Hướng dẫn:
a) ĐKXĐ: x ≠ – 1;x ≠ 3.
⇔ – x – 1 – x + 3 = x2 + x – x2 + 2x – 1
⇔ 5x = 3 ⇔ x = 3/5.
Vậy phương trình đã cho có nghiệm là x = 3/5.
b) ĐKXĐ: x ≠ 3, x ≠ 4, x ≠ 5, x ≠ 6.
Vậy phương trình đã cho có nghiệm là x = 0;x = 9/2.
c) ĐKXĐ: x ≠ 1.
⇔ (x2 – 1 )( x3 + 1) – (x2 – 1)(x3 – 1) = 2(x2 + 4x + 4)
⇔ (x5 + x2 – x3 – 1) – (x5 – x2 – x3 + 1) = 2(x2 + 4x + 4)
⇔ 2x2 – 2 = 2x2 + 8x + 8
⇔ 8x = – 10 ⇔ x = – 5/4.
Vậy phương trình đã cho có nghiệm là x = – 5/4.
Bài 5: Giải phương trình
Hướng dẫn:
ĐKXĐ: x ∉ {-2; -3/2; -1; -1/2}
Phương trình tương đương với
Vậy phương trình có nghiệm là x = (-5 ± √3)/4 và x = -5/2
Bài 6: Giải phương trình
Hướng dẫn:
ĐKXĐ: x ≠ -1 và x ≠ 1/2
Phương trình tương đương với
⇔ x = 5 (thỏa mãn điều kiện)
Vậy phương trình có nghiệm là x = 5
Bài 7: Giải phương trình
Hướng dẫn:
ĐKXĐ: x≠±2 và x≠-1
Phương trình tương đương với
(x+1)2(x-2) + (x-1)(x+1)(x+2) = (2x+1)(x-2)(x+2)
⇔ (x2 + 2x + 1)(x – 2) + (x2 – 1)(x + 2) = (2x + 1)(x2 – 4)
⇔ x3 – 2x2 + 2x2 – 4x + x – 2 + x3 + 2x2 – x – 2 = 2x3 – 8x + x2 – 4
⇔ x2 + 4x = 0 ⇔(thỏa mãn điều kiện)
Vậy phương trình có nghiệm là x = -4 và x = 0
Bài 8: Giải phương trình
Hướng dẫn:
ĐKXĐ: x ≠ -2/3 và x ≠ 2
Phương trình tương đương với (2x+1)(x-2) = (x+1)(3x+2)
⇔ 2x2 – 4x + x – 2 = 3x2 + 2x + 3x + 2
⇔ x2 + 8x + 4 = 0 ⇔ x = -4 ± 2√3 (thỏa mãn điều kiện)
Vậy phương trình có nghiệm là x = -4 ± 2√3
Trên đây, .vn đã giới thiệu đến quý thầy cố và các bạn học sinh chuyên đề phương trình chứa ẩn ở mẫu và cách giải phương trình chứa ẩn ở mẫu nhanh nhất cùng nhiều bài tập vận dụng khác. Hi vọng, bài viết đã mang đến cho bạn những thông tin hữu ích. Xem thêm cách giải phương trình bậc nhất một ẩn tại đường link này bạn nhé !
Đăng bởi: Thcs-thptlongphu.edu.vn
Chuyên mục: Tổng hợp