Giải bài 96, 97, 98, 99 trang 21 SBT Toán 9 tập 1

0
118
Rate this post

Giải bài tập trang 21 bài ôn tập chương I – căn bậc hai căn bậc ba Sách bài tập (SBT) Toán 9 tập 1. Câu 96: Nếu x thỏa mãn điều kiện…

Câu 96 trang 21 Sách Bài Tập (SBT) Toán 9 Tập 1

Nếu x thỏa mãn điều kiện:

(sqrt {3 + sqrt x }  = 3)

Bạn đang xem: Giải bài 96, 97, 98, 99 trang 21 SBT Toán 9 tập 1

Thì x nhận giá trị là

(A)  0 ;               

(B) 6  ;                  

(C) 9 ;                      

(D) 36 .

Hãy chon câu trả lời đúng.

Gợi ý làm bài

Ta có: 

(eqalign{
& sqrt {3 + sqrt x } = 3 Leftrightarrow 3 + sqrt x = 9 cr 
& Leftrightarrow sqrt x = 6 Leftrightarrow x = 36 cr} )

Vậy chọn đáp án D. 

 

 


Câu 97 trang 21 Sách Bài Tập (SBT) Toán 9 Tập 1

Biểu thức

(sqrt {{{3 – sqrt 5 } over {3 + sqrt 5 }}}  + sqrt {{{3 + sqrt 5 } over {3 – sqrt 5 }}} )

Có giá trị là

(A)     3 ;               

(B)     6  ;                  

(C)     (sqrt 5 );                      

(D)     ( – sqrt 5 ).

Hãy chọn câu trả lời đúng.

Gợi ý làm bài

Chọn đáp án A.

 


Câu 98 trang 21 Sách Bài Tập (SBT) Toán 9 Tập 1

Chứng minh các đẳng thức:

a) (sqrt {2 + sqrt 3 }  + sqrt {2 – sqrt 3 }  = sqrt 6 )

b) (sqrt {{4 over {{{left( {2 – sqrt 5 } right)}^2}}}}  – sqrt {{4 over {{{left( {2 + sqrt 5 } right)}^2}}}}  = 8.)

Gợi ý làm bài

a) Ta có: (4 > 3 Rightarrow sqrt 4  > sqrt  3  Rightarrow 2 > sqrt 3  > 0)

 Suy ra: (sqrt {2 + sqrt 3 }  + sqrt {2 – sqrt 3 }  > 0)

Ta có: 

({left( {sqrt {2 + sqrt 3 }  + sqrt {2 – sqrt 3 } } right)^2} = 2 + sqrt 3  + 2sqrt {2 + sqrt 3 } .sqrt {2 – sqrt 3 }  + 2 – sqrt 3 )

( = 4 + 2sqrt {4 – 3}  = 4 + 2sqrt 1  = 4 + 2 = 6)

({left( {sqrt 6 } right)^2} = 6)

Vì ({left( {sqrt {2 + sqrt 3 }  + sqrt {2 – sqrt 3 } } right)^2} = {left( {sqrt 6 } right)^2}) nên (sqrt {2 + sqrt 3 }  + sqrt {2 – sqrt 3 }  = sqrt 6 )

b) Ta có:

(sqrt {{4 over {{{left( {2 – sqrt 5 } right)}^2}}}}  – sqrt {{4 over {{{left( {2 + sqrt 5 } right)}^2}}}}  = {{sqrt 4 } over {sqrt {{{left( {2 – sqrt 5 } right)}^2}} }} – {{sqrt 4 } over {sqrt {{{left( {2 + sqrt 5 } right)}^2}} }})

( = {2 over {left| {2 – sqrt 5 } right|}} – {2 over {left| {2 + sqrt 5 } right|}} = {2 over {sqrt 5  – 2}} – {2 over {sqrt 5  + 2}})

( = {{2left( {sqrt 5  + 2} right) – 2left( {sqrt 5  – 2} right)} over {left( {sqrt 5  + 2} right)left( {sqrt 5  – 2} right)}} = {{2sqrt 5  + 4 – 2sqrt {5 + 4} } over {5 – 4}} = 8)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

 


Câu 99 trang 21 Sách Bài Tập (SBT) Toán 9 Tập 1

Cho:

(A = {{sqrt {4{x^2} – 4x + 1} } over {4x – 2}}.)

Chứng minh: (left| A right| = 0,5) với (x ne 0,5.)

Gợi ý làm bài

Ta có:

(A = {{sqrt {4{x^2} – 4x + 1} } over {4x – 2}} = {{sqrt {{{left( {2x – 1} right)}^2}} } over {4x – 2}} = {{left| {2x – 1} right|} over {2left( {2x – 1} right)}})

– Nếu : (eqalign{
& 2x – 1 ge 0 Leftrightarrow 2x ge 1 cr 
& Leftrightarrow x ge {1 over 2} Leftrightarrow x ge 0,5 cr} )

Suy ra: (left| {2x – 1} right| = 2x – 1)

Ta có: (A = {{left| {2x – 1} right|} over {2left( {2x – 1} right)}} = {{2x – 1} over {2left( {2x – 1} right)}} = {1 over 2} = 0,5)

– Nếu: (eqalign{
& 2x – 1 & Leftrightarrow x

Suy ra: (left| {2x – 1} right| =  – (2x – 1))

Ta có: 

(eqalign{
& A = {{left| {2x – 1} right|} over {2left( {2x – 1} right)}} = {{ – left( {2x – 1} right)} over {2left( {2x – 1} right)}} = {1 over 2} = – 0,5 cr 
& Rightarrow left| A right| = left| { – 0,5} right| = 0,5 cr} )

Trường

Giải bài tập

Bản quyền bài viết thuộc thcs-thptlongphu. Mọi hành vi sao chép đều là gian lận!
Nguồn chia sẻ: https://thcs-thptlongphu.edu.vn
https://thcs-thptlongphu.edu.vn/giai-bai-96-97-98-99-trang-21-sbt-toan-9-tap-1/

Đăng bởi: Thcs-thptlongphu.edu.vn

Chuyên mục: Tổng hợp