Giải SGK Toán 7 trang 84 tập 1 Kết nối tri thức – Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng. Bài 4.27 Trong Hình 4.70, đường thẳng nào là đường trung trực của đoạn thẳng AB?
Bài 4.23 trang 84 sách giáo khoa Toán 7 Kết nối tri thức tập 1
Cho tam giác ABC cân tại A và các điểm E, F lần lượt nằm trên các cạnh AC, AB sao cho BE vuông góc với AC, CF vuông góc với AB (H.4.69). Chứng minh rằng BE = CF.
Bạn đang xem: Giải bài 4.23, 4.24, 4.25, 4.26, 4.27, 4.28 trang 84 SGK Toán 7 tập 1 – KNTT
Lời giải:
Do tam giác ABC cân tại A nên: (widehat {ABC} = widehat {ACB})(tính chất tam giác cân)
Xét 2 tam giác vuông BFC và CEB:
(widehat {ABC} = widehat {ACB})
BC chung
=>(Delta BFC = Delta CEB)(cạnh huyền – góc nhọn)
=>BE=CF (2 cạnh tương ứng).
Bài 4.24 trang 84 sách giáo khoa Toán 7 Kết nối tri thức tập 1
Cho tam giác ABC cân tại A và M là trung điểm của đoạn thẳng BC. Chứng minh AM vuông góc với BC và AM là tia phân giác của góc BAC.
Lời giải:
Xét 2 tam giác AMC và AMB có:
AM chung
AB=AC (do tam giác ABC cân tại A)
MB=MC (gt)
(Rightarrow) (Delta )AMB=AMC(c.c.c)
(Rightarrow) (widehat {CAM} = widehat {CBM})(2 góc tương ứng)
(Rightarrow) AM là phân giác của góc BAC
Mặt khác: (widehat {AMB} = widehat {AMC})(2 góc tương ứng) mà (widehat {AMB} + widehat {AMC} = {180^o})( 2 góc kề bù)
Nên: (widehat {AMB} = widehat {AMC} = {90^o}).
Vậy AM vuông góc với BC.
Bài 4.25 trang 84 sách giáo khoa Toán 7 Kết nối tri thức tập 1
Cho tam giác ABC và M là trung điểm của đoạn thẳng BC.
a) Giả sử AM vuông góc với BC. Chứng minh rằng tam giác ABC cân tại A.
b) Giả sử AM là tia phân giác của góc BAC. Chứng minh rằng tam giác ABC cân tại A.
Lời giải:
a)
Xét 2 tam giác vuông AMC và AMB có:
AM chung
BM=CM (gt)
=>(Delta AMB = Delta AMC) (c.g.c)
=> AM=BM (2 cạnh tương ứng)
=> Tam giác ABM cân tại A
b)
Kẻ MH vuông góc với AB(H thuộc AB)
MG vuông góc với AC (G thuộc AC)
Xét 2 tam giác vuông AHM và AGC có:
(widehat {HAM} = widehat {GAM})
AM chung
=>(Delta AHM = Delta AGC)(cạnh huyền – góc nhọn)
=>HM=GM (2 cạnh tương ứng)
Xét 2 tam giác vuông BHM và CGM có:
BM=CM(gt)
MH=MG(cmt)
=>(Delta BHM = Delta CGM)(cạnh huyền – cạnh góc vuông)
=>(widehat {BMH} = widehat {CMH})(2 góc tương ứng)
=>Tam giác ABC cân tại A.
Bài 4.26 trang 84 sách giáo khoa Toán 7 Kết nối tri thức tập 1
Tam giác vuông có hai cạnh bằng nhau được gọi là tam giác vuông cân.
Hãy giải thích các khẳng định sau:
a) Tam giác vuông cân thì cân tại đỉnh góc vuông;
b) Tam giác vuông cân có hai góc nhọn bằng 45°;
c) Tam giác vuông có một góc nhọn bằng 45° là tam giác vuông cân.
Lời giải:
a) Do tổng ba góc trong 1 tam giác bằng 180 độ nên tam giác không thể có 2 góc vuông
=>Tam giác vuông cân sẽ có 2 góc nhọn bằng nhau
=> Tam giác vuông cân thì cân tại đỉnh góc vuông.
b) Giả sử hai góc nhọn trong tam giác vuông là x, ta có:
(begin{array}{l}x + x + {90^o} = {180^o}\ Rightarrow 2x = {90^o}\ Rightarrow x = {45^o}end{array})
Vậy tam giác vuông cân có hai góc nhọn bằng 45°.
c) Gọi góc còn lại của tam giác vuông có 1 góc nhọn bằng 45° là x, ta có:
(x + {45^o} + {90^o} = {180^o} Rightarrow x = {45^o})
Vậy tam giác vuông có một góc nhọn bằng 45° là tam giác vuông cân.
Bài 4.27 trang 84 sách giáo khoa Toán 7 Kết nối tri thức tập 1
Trong Hình 4.70, đường thẳng nào là đường trung trực của đoạn thẳng AB?
Lời giải:
Quan sát hình 4.70 ta thấy đường thẳng m vuông góc với đoạn thẳng AB tại trung điểm của AB nên m là đường trung trực của AB.
Bài 4.28 trang 84 sách giáo khoa Toán 7 Kết nối tri thức tập 1
Cho tam giác ABC cân tại A có đường cao AD. Chứng minh rằng đường thẳng AD là đường trung trực của đoạn thẳng BC.
Lời giải:
Xét 2 tam giác vuông ADC và ADB có:
AD chung
AC=AB
=>(Delta ADC = Delta ADB)(cạnh huyền – cạnh góc vuông)
=>CD=BD (2 cạnh tương ứng)
=> D là trung điểm của BC.
Mà AD vuông góc với BC
Vậy AD là đường trung trực của đoạn thẳng BC.
Trường
Đăng bởi: Thcs-thptlongphu.edu.vn
Chuyên mục: Tổng hợp